Compact Proofs of Retrievability

Hovav Shacham Brent Waters
hovav@cs.ucsd.edu bwaters@csl.sri.com

February 20, 2008

Abstract

In a proof-of-retrievability system, a data storage center must prove to a verifier that he is
actually storing all of a client’s data. The central challenge is to build systems that are both
efficient and provably secure —that is, it should be possible to extract the client’s data from
any prover that passes a verification check. All previous provably secure solutions require that
a prover send O(l) authenticator values (i.e., MACs or signatures) to verify a file, for a total of
O(I?) bits of communication, where [is the security parameter. The extra cost over the ideal
O(l) communication can be prohibitive in systems where a verifier needs to check many files.

We create the first compact and provably secure proof of retrievability systems. Our solutions
allow for compact proofs with just one authenticator value —in practice this can lead to proofs
with as little as 40 bytes of communication. We present two solutions with similar structure.
The first one is privately verifiable and builds elegantly on pseudorandom functions (PRFs);
the second allows for publicly verifiable proofs and is built from the signature scheme of Boneh,
Lynn, and Shacham in bilinear groups. Both solutions rely on homomorphic properties to
aggregate a proof into one small authenticator value.

1 Introduction

There is a increasing trend of both personal and enterprise data’s being stored at third party
locations. In some cases users employ explicit storage services such as Amazon’s S3 online storage
service to back up data. In other cases, user data will be implicitly stored at third party sites as
part of the trend of “Software as a Service.” For example, the site Salesforce.com provides a suite
of online tools that helps to manage several aspects of a corporation’s sales strategy and stores all
stores all sales records submitted.

In several applications it is essential for a user to be ensure himself that his data is still available
and ready for retrieval if needed. E.g., he wants to make sure that the service didn’t lose his e-mail
or sales invoices. This capability can be important to storage providers as well. Users may be
reluctant to entrust their data to an unknown startup; an auditing mechanism can reassure them
that their data is indeed being saved.

Recently, Juels and Kaliski [I7] and independently Ateniese et al. [4, [3] looked at how the
problem of how a server can prove that it is storing data. Juels and Kaliski cast this problem as a
“Proof of Retrievability” (POR) and provided a formal definition for a secure POR system —in a
secure system if a server can pass an audit then a simulator (w.h.p.) must be able to extract the
file.

www.manaraa.com

hovav@cs.ucsd.edu
bwaters@csl.sri.com
Salesforce.com

One simple way to achieve this is to demand that the service send back all the data it claims to
have stored for the useIE]; however this auditing method can be prohibitively expensive in practice.
Many times, a user will want only to audit the server, not to retrieve all of her data— of which there
might be terabytes. Ideally, a proof-of-retrievability system will satisfy the following desiderata:

Efficient. The system should be as efficient as possible in terms of both computational complexity
and communication complexity. Ideally, a system should have O(l) bits of communication for
a POR of a file, where [is a security parameter.

Publicly verifiable. A system is publicly verifiable if any (untrusted) entity can perform the
verification audit. This is desirable in settings where many users might share file storage or
when a third party is employed to audit the storage servers.

Publicly retrievable. A system is publicly retrievable if an (untrusted) entity could potentially
extract the file contents. In practice we could of course add additional access controls to
prevent unauthorized access. A desirable property in this context is that if an attacker were
allowed to access the stored file he still could not break the POR security.

Unbounded use. We would like a system not to impose an a priori bound on the number of audit
protocol interactions. In the past bounded systems have been considered for problems such as
Identity-Based Encryption [16] and CCA-secure encryption [9] where the system is secure as
long as the adversary makes at most ¢ private key extraction or decryption queries (typically
the public parameters in such systems will grow with t). After ¢ queries the system will need
to stop functioning; accordingly, unbounded use has traditionally been considered to be the
“right” definition for such systems and we consider it to be important in POR systems.

Stateless. A stateless verifier will not need to maintain state between different audits. Publicly
verifiable systems can be inherently stateless. In private verification systems a stateless system
can be audited by multiple trusted machines without requiring coordination.

In their paper, Juels and Kaliski provide two schemes in which they redundantly encode a file
with an erasure code and apply an audit that probabilistically ensures enough blocks are retrievable
to reconstruct the file. In their first scheme, the encoder embeds “sentinel” blocks into the file before
encrypting it. These blocks are derived from a PRF for which the verifier keeps the key. During an
audit the verifier requests a set of sentinel blocks that haven’t been used before and checks them
for correctness. Since the file is encrypted the server cannot distinguish sentinel values from data
blocks and a server that corrupts or forgets enough data blocks with high probability will corrupt
a sentinel block and get caught.

The primary drawback of this first solution is that some sentinel blocks get used up with each
audit. Thus, a verifier can perform only a limited number of audits and the system only meets a
weaker, bounded correctness definition; moreover, the verifier must hold a secret and be stateful.
Therefore, the verifying party must be trusted and even multiple trusted machines cannot indepen-
dently verify as they must share state (or pre-divide the set of sentinels used). To address these
concerns Juels and Kaliski propose a second scheme, using techniques from Lillibridge et al. [19] and
Naor and Rothblum [22], in which each block of the redundantly encoded data is stored along with a

!The user can easily verify the integrity of the response if he stores a hash of the file. Alternatively, the user can
store a signature alongside the data at the server and verify the signature upon retrieval.

www.manaraa.com

MAC. (Signatures can also be used to obtain public verifiability; Ateniese et al. [4l [3] first suggested
publicly verifiable schemes.) In an audit, the verification algorithm requests a random [-element
set of blocks from the receiver, together with their MACs, and checks the integrity of each block.

While this second solution addresses the problems enumerated above, the communication com-
plexity of audits is relatively large. In particular, in order to achieve [-bit security the prover must
send the verifier O(l) blocks. In practice, this can be a problem for applications in which a user
wants to audit several different stored files— each file will require around I MACs or approximately
O(I?) bits of communication. For typical security parameters this can blow up the communication
by a factor of around 80 compared to an ideal solution where only one MAC is sent.

1.1 Owur Contributions

In this paper we create the first systems with compact proofs of retrievability. We present two
solutions with similar structure.

A scheme with private verifiability. Our first solution is privately verifiable and can admit
proofs of retrievability as small as 20 bytes. Our main idea is that instead of sending out ! separate
authentication-value-message-block pairs (for security parameter [), the prover aggregates them
into one pair using homomorphic operations, then sends out the aggregate, which is only as long
as a single block and MAC.

We realize this by breaking an (erasure encoded) file into n blocks my,...,m, € Z, for some
large prime p. The storage service will then choose a random « € Z, and PRF key k for function f.
These are the secret keys for the system. Each block will then be associated with an authentication
value o; € Z,, where o; is calculated as

o; = fr(i) +am; .

When the verification algorithm requests a proof it will specify a random challenge set I of [indices
along with [random coefficients in Z,. In the random oracle model we can use a hash function to
select all of these challenge values with small communication complexity. Let @ be the set {(i,v;)}
of challenge index—coefficient pairs. The prover then calculates the response, a pair (o, 1), as

o — Zai and W Zl/zmz

(1,v5)€Q (1,v:)€Q

Now verifier can check that the response was correctly formed by checking that

a;a-u—i- Z vi - f(i) .
(i,l/»;)EQ

While it is clear that our techniques admit short responses, it is not obvious that our new
system will admit a simulator that can extract files. If the prover returned [separate blocks in
each verification response then an extractor could interact with the prover several times and collect
enough blocks to reconstruct the file. (By making [appropriately large the verifier can ensure,
w.h.p., that the prover has enough of the encoded blocks.) However, when the blocks are aggregated
together, as in our case, a proof of extraction becomes more difficult. It isn’t immediately obvious
that any compression strategy will work at all—it may possible for an adversary to store many

www.manaraa.com

different linear combinations of the blocks and use these to answer queries, but not know any
individual data blocks. Indeed, in Appendix [C] we show such an attack on a system in which the
challenge coefficient values aren’t chosen correctly.

To prove security, there are two new challenges that we must overcome. First, we must ensure
that any response (o,) given to a challenge is correct. To do this we argue that if the PRF is
indistinguishable from a truly random function then an adversary will have no knowledge of o and
has at most a 1/p chance of forgery on any response. The second part of the argument is more
challenging. In our proof we view use a simulator that attempts to extract the file by repeatedly
recovering different linear combinations of blocks. These can be viewed as vectors over the space of
the encoded file. Gradually, the simulator will gather many of these vectors. In our proof we need
to make combinatorial arguments to show that the simulator can retrieve enough individual blocks
to reconstruct the file. The proof does not make use of random oracles; for details, see Section [4

A scheme with public verifiability. Our second scheme is publicly verifiable. It follows the
same framework as the first, but instead uses BLS signatures [0] for authentication values that
can be publicly verified. The structure of these signatures allows for them to be aggregated into
linear combinations as above. We prove the security of this scheme under the Computational Diffie-
Hellman problem over bilinear groups in the random oracle model. In Appendix [D] we present a
variant of the second scheme that is less efficient but is secure under the RSA assumption.

Our proof. We provide a modular proof for the security of our schemes, with three parts based
respectively on cryptographic, combinatorial, and coding-theoretical techniques. Only the first part
differs between the three schemes we propose. Our analysis is more precise than in previous work;
for example, we show that, for 80-bit security, challenge coefficients v; can be 80 bits long, not
160 as proposed in [3, p. 17]. Moreover, our analysis shows how system parameters can be reduced
if applications are willing to accept a 1-in-1,000,000 chance, say that an adversary will manage to
answer a proof-of-storage challenge correctly although he is not storing the file.

1.2 Related Work

There have been systems proposed with the aim of proving that a file is stored remotely [12| 13} 25].
While the goals of these papers are akin to proofs of retrievability, none of them gives a formal
proof that stored data could be extracted from a server that responds to audits.

As stated above, Juels and Kaliski [I7] gave the first formal definitions of extractability. In
their work they presented two systems; the first only achieved a weaker bounded notion of correct-
ness (and wasn’t publicly verifiable or retrievable), while the second (using ideas from Lillibridge
et al. [I9] and Naor and Rothblum [22]) can be made unbounded with public verifiability and re-
trievability. However, in this scheme the prover needs to send O(l) authenticator values and thus
isn’t compact. It is interesting to note that in the first sentinel-based scheme Juels and Kaliski
suggest a variant in which authenticator values are randomly XORed together to give a compact
proof. The authors do not, however, give a proof that in this variant the file can be extracted.
As we will see, proving extraction from aggregated authenticator values can be challenging; in Ap-
pendix [C] we show an attack on a natural but incorrect system. If the the XOR variant turned out
to be secure, it would still have the limitation of working for only a bounded number of queries.

Other work [12, 13] has considered RSA-based authenticators that exponentiate over the entire
file. Recently, Ateniese et al. [4, [3] proposed an interesting system that applied an RSA authenti-

www.manaraa.com

cator. They leverage the homomorphic properties of the RSA authenticator to compress the server
response. Roughly, In their system a file is parsed into n blocks of Zy with an authenticator
attached to each block. A prover proves possession of a file by homomorphically combining the
authenticators of each block. They proved storage possession under the RSA assumption.

The primary drawback of this first approach is its computational demands on the prover: an ex-
ponentiation for each block of data. For example, if we assume that a full exponentiation takes 5 ms
for a 1024-bit RSA modulus, then proving possession of a 1 GB file will take approximately 11 hours.

To deal with this issue Ateniese et al. [4, [3] suggest that one might modify their system to
sample some size-c subset of the blocks, where c is less than n. In addition, the authors give an
implementation and measurements of their system with relatively small values of ¢. For smaller
values of ¢ one must provide erasure encoding for an audit to ensure that a file is actually stored.
For example, in the absence of encoding, if any one block is erased by the storage server then this
block will be lost. If an adversary erases one block he will have a "¢ chance of escaping an audit
undetected, since this is the probability that the block will not be included in the audit.

While the authors suggest that erasure encoding might be used in such a system, they do not
provide a proof that in such a system with erasure encoding will necessarily be secure against all
attackers —that is, prove that for any attacker a simulator can extract the file. The authors give,
in Section 5, an analysis for an adversary that “deletes” certain blocks and keeps others. This
doesn’t model all the way an adversary might choose to misbehave. For example, an adversary
might store certain linear combinations of blocks (e.g., 4-m; + 3 - mg3) that he could use to answer
queries. In this ambiguous case the attacker neither has blocks m and mg since they are combined
together, nor has he completely deleted either one of them since the information he has about them
can be used to answer some queries. In Appendix [C] we describe a natural scheme that falls to
just such an attack. Moreover, it is not completely clear how to define an adversary that “deletes”
certain blocks and maintains others. For example, suppose some block comes from a low entropy
distribution (e.g., there are only two possible values). An adversary might be able to delete that
block —and lose information —and nevertheless might pass a particular audit simply by guessing
what the missing block was. (This example also illustrates the importance of handling adversaries
that succeed a fraction of the time, as an attacker might that makes such guesses.)

In general an attacker can use many different strategies (including economically beneficial ones)
to attack a system. To say that a system is secure it is necessary to prove it secure against all such
attackers. We consider providing compact and efficient systems with proofs of security against any
adversary our main contribution.

We emphasize that these arguments do not necessarily mean that there exist attacks on the
Ateniese et al. system (when erasure codes are applied); however, in order to prove such schemes
secure one must consider all such attackers. Indeed, in addition to our main schemes, we also show,
in Appendix @], how full-domain—hash RSA signatures [5, [§] can be used in our framework as an
alternative to BLS signatures. Our RSA-based variant is structurally similar to the Ateniese et al.
scheme and can be viewed as evidence that their scheme would be secure when instantiated with
small ¢ values, if erasure encoding were correctly applied.

2 Security Model

A proof of retrievability scheme defines four algorithms: Kg, St, V, and P. These behave as follows.

Kg(). This randomized algorithm generates a public-private keypair (pk, sk).

www.manaraa.com

St(sk, M). This randomized file-storing algorithm takes a secret key sk and a file M € {0,1}" to
store. It processes M to produce and output M™*, which will be stored on the server, and a
tag t. The tag contains information that names the file being stored; it could also contain
additional secret information encrypted under the secret key sk.

P, V. The randomized proving and verifying algorithms define a protocol for proving file retriev-
ability. During protocol execution, both algorithms take as input the public key pk and
the file tag t output by St. The prover algorithm also takes as input the processed file
description M* that is output by St, and the verifier algorithm takes as input the secret
key. At the end of the protocol run, V outputs 0 or 1, where 1 means that the file is being
stored on the server. We can denote a run of two machines executing the algorithms as:

{0,1} & (V(pk, sk, t) = P(pk, t, M*)).

We would like a proof-of-retrievability protocol to be correct and sound. Correctness requires
that, for all keypairs (pk, sk) output by Kg, for all files M € {0,1}", and for all (M*, t) output
by St(sk, M), the verification algorithm accepts when interacting with the valid prover:

(V(pk, sk, t) = P(pk, t, M*)) =1

A proof-of-retrievability protocol is sound if any cheating prover that convinces the verification
algorithm that it is storing a file M is actually storing that file, which we define in saying that it
yields up the file M to an extractor algorithm that interacts with it using the proof-of-retrievability
protocol. We formalize the notion of an extractor and then give a precise definition for soundness.

An extractor algorithm Extr(pk, sk, t, P’) takes the public and private keys, the file tag t, and
the description of a machine implementing the prover’s role in the proof-of-retrievability protocol:
for example, the description of an interactive Turing machine, or of a circuit in an appropriately
augmented model. The algorithm’s output is the file M € {0,1}". Note that Extr is given non—
black-box access to P’ and can, in particular, rewind it.

Consider the following setup game between an adversary A and an environment:

1. The environment generates a keypair (pk, sk) by running Kg, and provides pk to .A.

2. The adversary can now interact with the environment. It can make queries to a store oracle,

providing, for each query, some file M;. The environment computes (M™*, t) & St(sk, M) and
returns both M™* and t to the adversary.

3. For any M on which it previously made a store query, the adversary can undertake executions
of the proof-of-retrievability protocol, by specifying the corresponding tag t. In these protocol
executions, the environment plays the part of the verifier and the adversary plays the part of
the prover: V(pk, sk, t) = A. When a protocol execution completes, the adversary is provided
with the output of V. These protocol executions can be arbitrarily interleaved with each other
and with the store queries described above.

4. Finally, the adversary outputs a challenge tag t returned from some store query, and the
description of a prover P’.

Let M be the message input to the store query that returned the challenge tag t (along with a
processed version M* of M).

www.manaraa.com

The cheating prover P’ is e-admissible if it convincingly answers an e fraction of verification
challenges, i.e., if Pr[(V(pk, t) =P) = 1] > €. Here the probability is over the coins of the verifier
and the prover.

Definition 2.1. We say a proof-of-retrievability scheme is e-sound if there exists an extraction
algorithm Extr such that, for every adversary A, whenever A, playing the setup game, outputs an
e-admissible cheating prover P’ for a file M, the extraction algorithm recovers M from P’ —i.e.,
Extr(pk, t,P") = M — except possibly with negligible probability.

Note that it is okay for A to have engaged in the proof-of-retrievability protocol for M in its
interaction with the environment. Note also that each run of the proof-of-retrievability protocol is
independent: the verifier implemented by the environment is stateless.

2.1 Notes on the Model

Differences from Juels-Kaliski model. We briefly compare our definition to that given in [17].
Like the Juels-Kaliski definition, our definition is intended to capture the intuition that extractabil-
ity is the requirement for a proof of retrievability. Unlike Juels and Kaliski, we do not specify the
extraction algorithm as part of a scheme, because we do not expect that the extract algorithm will be
deployed in outsourced storage applications. Nevertheless, the extract algorithm used in our proofs
(cf. Section is quite simple: undertake many random V interactions with the cheating prover;
keep track of those queries for which V accepts the cheating prover’s reply as valid; and continue
until enough information has been gathered to recover file blocks by means of linear algebra. The
adversary A could implement this algorithm by means of its proof-of-retrievability protocol access.

In addition, we do not provide any of the algorithms with mutable state. Verifiers are stateless
(and probabilistic) in our schemes, and, as we noted in Section (I} we believe that statelessness is
important, particularly when there are multiple verifiers.

Finally, we require that extraction succeed (with all but negligible probability) from an adver-
sary that causes V to accept with any nonnegligible probability €. Intuitively, recovering enough
blocks to reconstruct the original file from such an adversary should take O(n/e) interactions;
our proofs achieve essentially this bound. At the same time, we do not make any block-isolation
or independence assumptions about the adversary’s behavior; extraction requires only that the
(V(pk,t) = P’) interaction output 1 on an € fraction of the query-and-randomness-tape space.

Concrete or asymptotic formalization. A proof-of-retrievability scheme is secure if no efficient
algorithm wins the game above except rarely, where the precise meaning of “efficient” and “rarely”
depends on whether we employ a concrete of asymptotic formalization.

It is possible to formalize the notation above either concretely or asymptotically. In a concrete
formalization, we require that each algorithm defining the proof-of-retrievability scheme run in at
most some number of steps, and that for any algorithm A that runs in time ¢ steps, that makes at
most ¢g store queries, and that undertakes at most ¢, proof-of-retrievability protocol executions,
extraction from an e-admissible prover succeeds except with some small probability §. In an asymp-
totic formalization, every algorithm is provided with an additional parameter 1* for security pa-
rameter k, we require each algorithm to run in time polynomial in k£, and we require that extraction
fail from an e-admissible prover with only negligible probability in k, provided e is nonnegligible.

www.manaraa.com

Public or private verification, public or private extraction. In the model above, the verifier
and extractor are provided with a secret that is not known to the prover or other parties. This is
a secret-verification, secret-extraction model model. If the verification algorithm does not use the
secret key, any third party can check that a file is being stored, giving public verification. Similarly,
if the extract algorithm does not use the secret key, any third party can extract the file from a
server, giving public extraction.

3 Constructions

In this section we give formal descriptions for both our private and public verification systems. The
systems here follow the constructions outlined in the introduction with a few added generalizations.
First, we allow blocks to contain s > 1 elements of Z,. This allows for a tradeoff between storage
overhead and communication overhead. Roughly the communication complexity grows as s + 1
elements of Z, and the ratio of authentication overhead to data stored (post encoding) is 1 : s.
Second, we describe our systems where the set of coefficients sampled from B can be smaller than
all of Z,. This enables us to take advantage make more efficient systems in certain situations.

3.1 Common Notation

We will work in the group Z,. When we work in the bilinear setting, the group Z, is the support
of the bilinear group G, i.e., #G = p. In queries, coefficients will come from a set B C Z,. For
example, B could equal Z,, in which case query coefficients will be randomly chosen out of all of Z,,.

After a file undergoes preliminary processing, the processed file is split into blocks, and each
block is split into sectors. Each sector is one element of Z,, and there are s sectors per block. If
the processed file is b bits long, then there are n = [b/slgp] blocks. We will refer to individual file
blocks as {m;;}, with 1 <i<mand1<j<s.

Queries. A query is an [-element set @ = {(,1;)}. Each entry (i,1;) € @ is such that i is a block
index in the range [1,n], and v; is a multiplier in B. The size [of @ is a system parameter, as is
the choice of the set B.

The verifier chooses a random query as follows. First, she chooses, uniformly at random, an
l-element subset I of [1,n]. Then, for each element ¢ € I she chooses, uniformly at random, an

element v; & B. We observe that this procedure implies selection of [elements from [1,n] without
replacement but a selection of [elements from B with replacement.

Although the set notation @ = {(i,v;)} is space-efficient and convenient for implementation,
we will also make use of a vector notation in the analysis. A query @ over indices I C [1,n] is
represented by a vector q € (Z,)" where q; = v; for i € I and q; = 0 for all i ¢ I. Equivalently,
letting uy, ..., u, be the usual basis for (Z,)", we have q = Z(i,ui)eQ Viuiﬁ

If the set B does not contain 0 then a random query (according to the selection procedure defined
above) is a random weight-/ vector in (Z,)" with coefficients in B. If B does contain 0, then a
similar argument can be made, but care must be taken to distinguish the case “¢ € I and v; = 0”
from the case “i ¢ 1.”

2We are using subscripts to denote vector elements (for q) and to choose a particular vector from a set (for u);
but no confusion should arise.

www.manaraa.com

Aggregation. For its response, the server responds to a query) by computing, for each j,

1 < j < s, the value
Wy Z vimyg; .

(i,Vi)EQ
That is, by combining sectorwise the blocks named in (), each with its multiplier v;. Addition, of
course, is modulo p. The response is (i1, ..., ps) € (Zp)s.

Suppose we view the message blocks on the server as an n x s element matrix M = (m;;), then,
using the vector notation for queries given above, the server’s response is given by qM.

3.2 Construction for Private Verification

Let f: {0,1}" x Kpyy — Z,, be a PRFEI The construction of the private verification scheme Priv is:

Priv.Kg(). Choose a random symmetric encryption key kenc pid Kene and a random MAC key
kmac & Kmac. The secret key is sk = (kenc, kmac); there is no public key.

Priv.St(sk, M). Given the file M, first apply the erasure code to obtain M’; then split M’ into n

blocks (for some n), each s sectors long: {m;;}i1<i<n. Now choose a PRF key k¢ & Kort
1<j<s

and s random numbers ar, .. . , o o Zy. Let to be n||Ency,, (kpe|a1|| - - - [|ovs); the file tag is
t = to||MACy,... (to). Now, for each i, 1 < i < n, compute

s
g; — fkprf(i) + Zajmij .
7j=1

The processed file M* is {m;;}, 1 <i < n, 1 <j < s together with {05}, 1 <i < n.

Priv.V(pk, sk, t). Parse sk as (kenc, kmac). Use kmac to verify the MAC on t; if the MAC is invalid,
reject by emitting 0 and halting. Otherwise, parse t and use kene to decrypt the encrypted
portions, recovering n, kpf, and a1, ..., a,s. Now pick a random [-element subset I of the set

[1,n], and, for each ¢ € I, a random element v; & B. Let @ be the set {(i,4)}. Send @ to
the prover.

Parse the prover’s response to obtain p1,...,us and o, all in Z,. If parsing fails, fail by
emitting 0 and halting. Otherwise, check whether

S

? .

o= Y Vifr(i)+ Yo
if so, output 1; otherwise, output 0.

Priv.P(pk, t, M*). Parse the processed file M* as {m;;}, 1 <i < n, 1 < j < s, along with {o;},

1 <7 < n. Parse the message sent by the verifier as @), an [-element set {(4,1;)}, with the i’s
distinct, each i € [1,n], and each v; € B. Compute

fj Z vim;; for 1 <j <s, and o — Z Vio; .
(ivl’i)eQ (ivyi)EQ

Send to the prover in response the values p1, ..., us and o.

3In fact, the domain need only be [lg N]-bit strings, where N is a bound on the number of blocks in a file.

www.manaraa.com

3.3 Construction for Public Verification

Let e: G x G — Gr be a bilinear map, let g be a generator of G, and let H: {0,1}* — G be the
BLS hash, treated as a random oracle. The construction of the public verification scheme Pub is:

Pub.Kg(). Generate a random signing keypair (spk, ssk) hia SKg. Choose a random « hid Ly, and
compute v < g%*. The secret key is sk = («, ssk); the public key is pk = (v, spk).

Pub.St(sk, M). Given the file M, first apply the erasure code to obtain M’; then split M’ into

n blocks (for some n), each s sectors long: {m;;}i<i<n. Now parse sk as («,ssk). Choose
1<5<s
a random file name name from some sufficiently large domain (e.g., Z,). Choose s random

elements uq, ..., us & G. Let to be “namel|n|jui - - |lus”; the file tag t is ty together with
a signature on ty under private key ssk: t « to||SSige(to). Now, for each i, 1 < i < n,
compute

o; — (H(nameHi) : Hu;mJ)a :
j=1

The processed file M* is {m;;}, 1 <i <n, 1 <j < s together with {o;}, 1 <i < n.

Pub.V(pk, sk, t). Parse pk as (v,spk). Use spk to verify the signature on on t; if the signature
is invalid, reject by emitting 0 and halting. Otherwise, parse t, recovering name, n, and
U,...,us. Now pick a random [-element subset I of the set [1,n], and, for each i € I, a

random element v; & B. Let @ be the set {(i,1;)}. Send @ to the prover.

Parse the prover’s response to obtain (u1,...,us) € (Zp)° and o € G. If parsing fails, fail by
emitting 0 and halting. Otherwise, check whether

S

e(o,g) L e H H (namel|i)"" - Hu?j, v) ;

(4,vi)€Q J=1
if so, output 1; otherwise, output 0.

Pub.P(pk, t, M*). Parse the processed file M* as {m;;}, 1 <i < n, 1 < j < s, along with {o;},
1 <i < n. Parse the message sent by the verifier as @), an l-element set {(i,v;)}, with the i’s
distinct, each ¢ € [1,n], and each v; € B. Compute

i — Zyimijezp for 1 < j <s, and o<—Ha§“€G.
(Z7VZ)EQ (Z7V1)EQ

Send to the prover in response the values u1,..., us and o.

3.4 Parameter Choices

Let A be a security parameter; typically, A = 80. For the private verification system, p must be
A bits for the MAC to be secureﬁ For the public verification system, p must be large enough that
discrete logarithm is hard in the bilinear group G: 2\ bits suffice for typical values of A [14].

4In fact, any A-bit field will do; GF(QA) would be particularly suitable for hardware implementation.

10

www.manaraa.com

The choice in s gives a tradeoff between storage overhead and computational and communication
overhead. For most practical systems we expect s to be small.

The challenge set B, the coding rate p, and the size of the challenge set [are chosen depending
on €, the maximum acceptable false-accept rate, per Theorem Assuming n > [, we need 1/# B+
pl < €. Since € is nonnegligible, this will certainly be satisfied when B is the set of A-bit strings,
p=1/2,and [equals \. For applications that can tolerate a larger error rate these parameters can
be reduce. For example, if a 1-in-1,000,000 error is acceptable, we can take B to be the set of 12-bit
strings, and [to be 12; alternatively, the coding expansion 1/p can be reduced. Note that the smaller
the elements of B, the more efficient the multiplications or exponentiations that involve them.

4 Security Proofs

In this section we prove that both of our systems are secure under the model we provided. Intutively,
we break our proof into three parts. The first part shows that the attacker can never give a forged
response back to the a verifier. The second part of the proof shows that from any adversary that
passes the check a non-negligible amount of the time we will be able to extract a constant fraction
of the encoded blocks. The second step uses the fact that (w.h.p.) all verified responses must be
legitimate. Finally, we show that if this constant fraction of blocks is recovered we can use the
erasure code to reconstruct the original file.

In this section we provide an outline of our proofs and state our main theorems and lemmas.
We defer the proofs of these to Appendix [A] The proof, for both schemes, is in three parts:

1. Prove that the verification algorithm will reject except when the prover’s {y;} are correctly
computed, i.e., are such that p; = Z(i vi)eQ Vimij. This part of the proof uses cryptographic
techniques.

2. Prove that the extraction procedure can efficiently reconstruct a p fraction of the file blocks
when interacting with a prover that provides correctly-computed {y;} responses for a non-
negligible fraction of the query space. This part of the proof uses combinatorial techniques.

3. Prove that a p fraction of the blocks of the erasure-coded file suffice for reconstructing the
original file. This part of the proof uses coding theory techniques.

The crucial point is the the second and third parts of the proof are identical for our two schemes;
only the first part is different.

4.1 Part-One Proofs

4.1.1 Scheme with Private Verifiability

Theorem 4.1. If the MAC scheme is unforgeable, the symmetric encryption scheme is semantically
secure, and the PRF is secure, then (except with negligible probability) no adversary against the
soundness of our private-verification scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {p;} and o that are computed correctly, i.e., as
they would be by Priv.P.

We prove the theorem in Appendix

11

www.manaraa.com

4.1.2 Scheme with Public Verifiability

Theorem 4.2. If the signature scheme used for file tags is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, then, in the random oracle model, except
with negligible probability no adversary against the soundness of our public-verification scheme ever
ever causes V to accept in a proof-of-retrievability protocol instance, except by responding with values
{u;} and o that are computed correctly, i.e., as they would be by Pub.P.

We prove the theorem in Appendix

4.2 Part-Two Proof

We say that a cheating prover P’ is well-behaved if it never causes V to accept in a proof-of-
retrievability protocol instance except by responding with values {y;} and o that are computed
correctly, i.e., as they would be by Pub.P. The part-one proofs above guarantee that all adversaries
that win the soundness game with nonnegligible probability output cheating provers that are well-
behaved, provided that the cryptographic primitives we employ are secure. The part-two theorem
shows that extraction always succeeds against a well-behaved cheating prover:

Theorem 4.3. Suppose a cheating prover P’ on an n-block file M is well-behaved in the sense
above, and that it is e-admissible: i.e., convincingly answers and € fraction of verification queries.
Let w = 1/#B — (pn)Y/(n — 1 + 1)!. Then, provided that ¢ — w is positive and nonnegligible, it is
possible to recover a p fraction of the encoded file blocks in O(n / (e — w)) interactions with A and
in O(n?s+ (1 +en?)(n) / (e — w)) time overall.

We first make the following definition.

Definition 4.4. Consider an adversary B, implemented as a probabilistic polynomial-time Turing
machine, that, given a query @ on its input tape, outputs either the correct response (qM in vector
notation) or a special symbol L to its output tape. Suppose B responds with probability e, i.e., on
an ¢ fraction of the query-and-randomness-tape space. We say that such an adversary is e-polite.

The proof of our theorem depends upon the following lemma that is proved in Appendix

Lemma 4.5. Suppose that B is an e-polite adversary as defined above. Let w equal 1/#B +
(pn)Y(n — 1+ 1)L If € > w then it is possible to recover a p fraction of the encoded file blocks in
O(n / (e — w)) interactions with B and in O(n*s+ (1 + en?)(n) / (e —w)) time overall.

To apply Lemma we need only show that a well-behaved e-admissible cheating prover P’, as
output by a setup-game adversary A, can be turned into an e-polite adversary B. But this is quite
simple. Here is how B is implemented. We will use the P’ to construct the e-adversary B. Given
a query @, interact with P’ according to (V(pk, sk, t,sk) = P’), playing the part of the verifier. If
the output of the interaction is 1, write (p1,..., ts) to the output tape; otherwise, write L. Each
time B runs P’, it provides it with a clean scratch tape and a new randomness tape, effectively
rewinding it. Since P’ is well-behaved, a successful response will compute (p1, .. ., 1s) as prescribed
for an honest prover. Since P’ is e-admissible, on an € fraction of interactions it answers correctly.
Thus algorithm B that we have constructed is an e-polite advesrary.

All that remains to to guarantee that w = 1/#B + (pn)!/(n — 1 + 1)! is such that ¢ — w is
positive — indeed, nonnegligible. But this simply requires that each of 1/#B and (pn)Y/(n —1+1)!
be negligible in the security parameter; see Section [3.4] O

12

www.manaraa.com

4.3 Part-Three Proof

Theorem 4.6. Given a p fraction of the n blocks of an encoded file M*, it is possible to recover
the entire original file M with all but negligible probability.

Proof. For rate-p Reed-Solomon codes this is trivially true, since any p fraction of encoded file
blocks suffices for decoding; see Appendix |B| For rate-p linear-time codes the additional measures
described in Appendix guarantee that the p fraction of blocks retrieved will allow decoding
with overwhelming probability. O

References

[1] M. Aigner and G. Ziegler. Proofs from The Book. Springer-Verlag, 3rd edition, 2004.

[2] N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal recovery. IEEE
Trans. Info. Theory, 42(6):1732-6, Nov. 1996.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. Cryptology ePrint Archive, Report 2007/202, 2007. Online:
http://eprint.iacr.org/. Version of 7 Dec. 2007; visited 10 Feb. 2008.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In S. De Capitani di Vimercati and P. Syverson, editors,
Proceedings of CCS 2007, pages 598—609. ACM Press, Oct. 2007.

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby, editors, Proceedings
of CCS 1993, pages 62-73. ACM Press, Nov. 1993.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297-319, Sept. 2004. Extended abstract in Proceedings of Asiacrypt 2001.

[7] H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate
Texts in Mathematics. Springer-Verlag, 1993.

[8] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 229-35. Springer-Verlag, Aug. 2000.

[9] R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, abhi shelat, and V. Vaikun-
tanathan. Bounded CCA2-secure encryption. In K. Kurosawa, editor, Proceedings of Asiacrypt
2007, volume 4833 of LNCS, pages 502-18. Springer-Verlag, Dec. 2007.

[10] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Trans. Info. € System Security, 3(3):161-85, 2000.

[11] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Computing, 33(1):167-226, 2003.

13

www.manaraa.com

http://eprint.iacr.org/

[12] Y. Deswarte, J.-J. Quisquater, and A. Saidane. Remote integrity checking. In S. Jajodia
and L. Strous, editors, Proceedings of IICIS 2003, volume 140 of IFIP, pages 1-11. Kluwer
Academic, Jan. 2004.

[13] D. Filho and P. Barreto. Demonstrating data possession and uncheatable data transfer. Cryp-
tology ePrint Archive, Report 2006/150, 2006. http://eprint.iacr.org/.

[14] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Cryptology
ePrint Archive, Report 2006/372, 2006. http://eprint.iacr.org/.

[15] L. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security micro-
processor minimizing both transmission and memory. In C. Glinther, editor, Proceedings of
FEurocrypt 1988, volume 330 of LNCS, pages 123-8. Springer-Verlag, May 1988.

[16] S.-H. Heng and K. Kurosawa. k-resilient identity-based encryption in the standard model.
IEICE Trans. Fundamentals, E89-A.1(1):39-46, Jan. 2006. Originally published at CT-RSA
2004.

[17] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In S. De Capitani di
Vimercati and P. Syverson, editors, Proceedings of CCS 2007, pages 584-597. ACM Press,
Oct. 2007. Full version: http://www.rsa.com/rsalabs/staff/bios/ajuels/publications/
pdfs/POR-preprint-August07.pdfl

[18] M. Krohn, M. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure codes
for efficient content distribution. In D. Wagner and M. Waidner, editors, Proceedings of IEEE
Security & Privacy 2004, pages 226—40. IEEE Computer Society, May 2004.

[19] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. A cooperative Internet
backup scheme. In B. Noble, editor, Proceedings of USENIX Technical 2003, pages 29-41.
USENIX, June 2003.

[20] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. In M. Yung, editor, Proceedings
of Crypto 2002, volume 2442 of LNCS, pages 31-46. Springer-Verlag, Aug. 2002.

[21] P. Maymounkov. Online codes. Technical Report TR2002-833, NYU, 2002.

[22] M. Naor and G. Rothblum. The complexity of online memory checking. In E. Tardos, editor,
Proceedings of FOCS 2005, pages 573-84. IEEE Computer Society, Oct. 2005.

[23] M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.
J. ACM, 36(2):335-48, Apr. 1989.

[24] L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM SIG-
COMM Computer Communication Rev., 27(2):24-36, Apr. 1997.

[25] T.Schwarz and E. Miller. Store, forget, and check: Using algebraic signatures to check remotely
administered storage. In M. Ahamad and L. Rodrigues, editors, Proceedings of ICDCS 2006.
IEEE Computer Society, July 2006.

14

www.manaraa.com

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.rsa.com/rsalabs/staff/bios/ajuels/publications/pdfs/POR-preprint-August07.pdf
http://www.rsa.com/rsalabs/staff/bios/ajuels/publications/pdfs/POR-preprint-August07.pdf

A Security Proof Details

In this section we give the proofs of the theorems and lemmas stated in Section

A.1 Proof of Theorem 4.1

Theorem 4.1. If the MAC scheme is unforgeable, the symmetric encryption scheme is semantically
secure, and the PRF is secure, then (except with negligible probability) no adversary against the
soundness of our private-verification scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {;} and o that are computed correctly, i.e., as
they would be by Priv.P.

We prove the theorem in a series of games.
Game 0. The first game, Game 0, is simply the challenge game defined in Section

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
MAC-authenticated tags ever issued as part of a store-protocol query. If the adversary ever submits
a tag t either in initiating a proof-of-storage protocol or as the challenge tag, that (1) verifies as
valid under kpac but (2) is not a tag authenticated by the challenger, the challenger declares failure
and aborts.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to construct a forger against the MAC scheme.

Game 2. In Game 2, the challenger includes in the tags not the encryption of kpyfljou]| - - ||ov
but a random bit-string of the same length. When given a tag by the adversary, the challenger uses
the values that would (in previous games) have been encrypted in the tag.

Note that the modification made in Game 1 ensures that the challenger never sees a tag except
those it issued through St queries, so it need never actually decrypt a tag portion.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to break the semantic security of the symmetric encryption scheme. Note
that the reduction so obtained will suffer a 1/¢s security loss, where ¢s is the number of St queries
made by the adversary, because we must use a hybrid argument between “all valid encryptions”
and “no valid encryptions.”

Game 3. In Game 3, the challenger picks uses truly random values in Z, instead of PRF out-
put, remembering these values to use when verifying the adversary’s responses in proof-of-storage
protocol instances. More specifically, the challenger evaluates fy .(7) not by applying the PRF

algorithm but by generating a random value r & Zp and inserting an entry (kpy,4,7) in a table; it
consults this table when evaluating the PRF to ensure consistency.

If there is a difference in the adversary’s success probability between Games 0 and 1, we can
use the adversary to break the security of the PRF. As before, a hybrid argument necessitates a
security loss in the reduction; this time, the loss is 1/(Ngs), where N is a bound on the number of
blocks in the encoding of any file the adversary requests to have stored.

15

www.manaraa.com

Game 4. In Game 4, the challenger keeps a table of its responses to St queries made by the
adversary. It observes each instance of the proof-of-storage protocol with the adversary — whether
because of a proof-of-storage query made by the adversary, or in the test made of P’, or as part
of the extraction attempt by Extr. If in any of these interactions the adversary responds with in a
way that (1) passes the verification algorithm but (2) is not what would have been computed by
an honest prover, the challenger declares failure and aborts.

More specifically, suppose the protocol instance involves an n-block file with secret values
ai,...,as, contains sectors {m;;}, and the block signatures issued by St are {o;}. Suppose
Q = {(i,v;)} is the query that causes the challenger to abort, and that the adversary’s response to
that query was p, ..., u} together with o’. Let the expected response—i.e., the one that would
have been obtained from an honest prover—be p1,...,us and o, where o = z(i,ui)eQ v;0; and
Wi = Z(i,w)eQ vym;; for 1 < j < s. If the adversary’s response satisfies the verifier —i.e., if
o = Z(i,w)EQ Vilkpui + Z;Zl ozj,u;-, where 7y ; is the random value substituted by Game 2 for
Frpee (), but p; # pj for at least one j, the challenger aborts. (If p; = p; for all j but o’ # o, it is
impossible that the verification equation holds, so we need not worry about this case.)

By the correctness of the scheme the expected values o along with {1;} also satisfy the verifica-
tion equation, so we have o =37, 1k, i + D5 ajpuj. Letting Ao © 5 — 5 and AVTH o 1 — py
for 1 < j < s and subtracting the verification equation for o from that for o/, we have

AU = ZajA,u,j . (1)
7j=1

We can think of {Au;} and Ao as variables in an (s + 1)-dimensional space. The values for
these variables that are accepted by the verifier are exactly those that satisfy equation , ie.,
those that lie on a certain s-dimensional hyperplane. Any choice of values {Ap;} and Ao on this
hyperplane, aside from the all-zero assignment that corresponds to the honest prover’s answer, will
cause the challenger to abort.

We will proceed by induction on the adversary’s proof-of-storage protocol instances for any file,
proving that if the adversary had not caused an abort in its first ¢ protocol instances, it will not
cause an abort in its (i + 1)st protocol instance except with negligible probability.

At the time of the adversary’s first protocol execution, the values oy, ..., as are independent of
its view: They are no longer encrypted in the tag, and their only other appearance is in computing
Of = Thyypi +Zj’:1 ajmij for 1 <4 < n; but the random value 7 ; replacing fkprf(i) (and used only
there) means that o; is independent of a1, ..., ;. Thus the probability that the values {Apu;} and
Ao it chooses lie on the abort hyperplane is 1/p, so execution continues with probability 1 — 1/p.

The adversary learns some information about the abort-hyperplane from the rejection of its
response: he learns that the point he queried is not on the hyperplane, and neither is any point
on the line between that point and the origin. For his second protocol execution, he can choose a
point on a plane containing this line but not on the line; this point lies on the abort-hyperplane
with probability 1/(p — 1). No other way of choosing a point allows him a success probabilty so
high.

More generally, after ¢ executions, the adversary has eliminated ¢ lines between his each of his
i points and the origin. Thus for his (i + 1)st execution he can succeed in naming a point on the
abort-hyperplane with probability at most 1/(p —i). To achieve this bound, he must choose all his
points from a single plane passing through the origin; with this strategy, each rejection allows him
to eliminate p points out of the p? points on the plane.

16

www.manaraa.com

To complete the induction, we see that the challenger aborts at some point during the adver-
sary’s g protocol executions with probability

1 1 1
()0) k)
p p—1 p—q+l1
which is negligible. (This argument is inspired by Cramer and Shoup’s analysis of their encryption
scheme [11].)

Wrapping up. In Game 4, the adversary is constrained from answering any verification query
with values other than those that would have been computed by Priv.P. Yet we have argued that,
assuming the MAC, encryption scheme, and PRF are secure, there is only a negligible difference in
the success probability of the adversary in this game compared to Game 1, where the adversary is
not constrained in this manner. This completes the proof of Theorem O

A.2 Proof of Theorem 4.2

Theorem 4.2. If the signature scheme used for file tags is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, then, in the random oracle model, except
with negligible probability no adversary against the soundness of our public-verification scheme ever
ever causes V to accept in a proof-of-retrievability protocol instance, except by responding with values
{u;} and o that are computed correctly, i.e., as they would be by Pub.P.

Once again, we prove the theorem as a series of games.

Game 0. The first game, Game 0, is simply the challenge game defined in Section [2| with the
changes for public verifiability sketched at the end of that section.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
signed tags ever issued as part of a store-protocol query. If the adversary ever submits a tag t either
in initiating a proof-of-retrievability protocol or as the challenge tag, that (1) has a valid signature
under ssk but (2) is not a tag signed by the challenger, the challenger declares failure and aborts.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to construct a forger against the signature scheme.

Game 2. Game 2 is the same as Game 1, with one difference. The challenger keeps a list of its
responses to St queries made by the adversary. Now the challenger observes each instance of the
proof-of-retrievability protocol with the adversary — whether because of a proof-of-retrievability
query made by the adversary, or in the test made of P’, or as part of the extraction attempt by
Extr. If in any of these instances the adversary is successful (i.e., V outputs 1) but the adversary’s
aggregate signature o is not equal to H(i,w) cQ o;" (where @ is the challenge issued by the verifier
and o; are the signatures on the blocks of the file considered in the protocol instance) the challenger
declares failure and aborts.

Before analyzing the difference in success probabilities between Games 1 and 2, we will establish
some notation and draw a few conclusions. Suppose the file that causes the abort is n blocks long,
has name name, has generating exponents {u;}, and contains sectors {m;;}, and that the block
signatures issued by St are {o;}. Suppose @ = {(i,v;)} is the query that causes the challenger

17

www.manaraa.com

to abort, and that the adversary’s response to that query was puf,...,pu, together with o’. Let
the expected response —i.e., the one that would have been obtained from an honest prover —be
i1, ..., s and o, where o = H(i,w)eQ o/ and p; = Z(iM)GQ vim;j for 1 < j <'s. By the correctness
of the scheme, we know that the expected response satisfies the verification equation, i.e., that

S

e(o.9) =e([] H(name|i)" [v) ;
(4,vi)€Q Jj=1

Because the challenger aborted, we know that o # ¢’ and that ¢’ passes the verification equation,

i.e., that

S /
e(o’,g9) =e¢(H H (namel|i)"" - Hugj, v)
(4,1)€Q J=1
where v = g% is part of the challenger’s public key. Observe that if “;‘ = p; for each j, it follows
from the verification equation that ¢’ = o, which contradicts our assumption above. Therefore, if
we define Ap; def ,u,;» — pj; for 1 < j <'s, it must be the case that at least one of {Apu;} is nonzero.
With this in mind, we now show that if there is a nonnegligible difference in the adversary’s
success probabilities between Games 1 and 2 we can construct a simulator that solves the compu-
tational Diffie-Hellman problem.
The simulator is given as inputs values g, g%, h € G; its goal is to output h®. The simulator
behaves like the Game 1 challenger, with the following differences:

e In generating a key, it sets the public key v to g“ received in the challenge. This means that
it does not know the corresponding secret key a.

e The simulator programs the random oracle H. It keeps a list of queries and responses to

answers consistently. In answering the adversary’s queries it chooses a random r b Z,, and
responds with ¢” € G. It also answers queries of the form H(name||i) in a special way, as we
will see below.

e When asked to store some file whose coded representation comprises the n blocks {m;;},
1<i<n,1<j <s, the simulator behaves as follows. It chooses a name name at random.
Because the space from which names are drawn is large, it follows that, except with negligible
probability, the simulator has not chosen this name before for some other file and a query has
not been made to the random oracle at namel|i for any i.

For each j, 1 < j < s, the simulator chooses random values (3}, 7; & Zy, and sets u; g’

. . . R
For each i, 1 < 7 < n, the simulator chooses a random value r; < Z,, and programs the
random oracle at ¢ as

H(nameli) = g" (gzjﬂﬁfm” . hzj:ﬂjmij) .
Now the simulator can compute ¢;, since we have
S S
H(namel[i) - [[u]" = [T - g [gZom 5 p2msnms

j=1 j=1
— gZ§:1 Bimij | 3251 vimij g / gZ§:1 Bimij | p25=1Yimij g’

so the simulator computes o; = (H (nameli) - | u;-n”)a = (g¥)".

18

www.manaraa.com

e The simulator continues interacting with the adversary until the condition specified in the def-
inition of Game 2 occurs: the adversary, as part of a proof-of-retrievability protocol, succeeds
in responding with a signature ¢’ that is different from the expected signature o.

The change made from Game 0 to Game 1 establishes that the parameters associated with
this protocol instance — name, n, {u;}, {m;;}, and {o;} — were generated by the simulator as
part of a St query; otherwise, execution would have already aborted. This means that these
parameters were generated according to the simulator’s procedure described above. Now,
dividing the verification equation for the forged signature o’ by the verification equation for
the expected signature o, we obtain

s

e(0'/0,9) = e([;") = (T (o™ - 1)>.0) .
j=1

j=1
Rearranging terms yields

e(a’ oy = ﬁjA“j7 g) = e(h, v)2§:1 Vi A 7

Noting that v equals g%, we see that we have found the solution to the computational Diffie-
Hellman problem,

-
he — (0'/ . 0,71 o Z§:1 ,@jA/ﬁ) 25178k

unless evaluating the exponent causes a divide-by-zero. However, we noted already that not
all of {Ap;} can be zero, and the values of {v;} are information theoretically hidden from
the adversaryE] so the denominator is zero only with probability 1/p, which is negligible.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
1 and 2, we can construct a simulator that uses the adversary to solve computational Diffie-Hellman,
as required.

Game 3. Game 3 is the same as Game 2, with one difference. As before, the challenger tracks
St queries and observes proof-of-retrievability protocol instances. This time, if in any of these
instances the adversary is successful (i.e., V outputs 1) but at least one of the aggregate messages
m; is not equal to the expected E(i,w)e@ vim;j (where, again, @ is the challenge issued by the
verifier) the challenger declares failure and aborts.

Again, let us establish some notation. Suppose the file that causes the abort is n blocks long,
has name name, has generating exponents {u;}, and contains sectors {m;;}, and that the block
signatures issued by St are {o;}. Suppose @ = {(i,v;)} is the query that causes the challenger
to abort, and that the adversary’s response to that query was i, ..., u, together with o’. Let
the expected response—i.e., the one that would have been obtained from an honest prover —be
ps- -, ps and o, where o = [];,.)c0 o/ and p; = DGweqVvimij for 1. < j < s. Game 2
already guarantees that we have o/ = o it is only the values {,u;} and {p;} that can differ. Define
A def p; — pj for 1 < j < s; again, at least one of {Ay;} is nonzero.

We now show that if there is a nonnegligible difference in the adversary’s success probabilities
between Games 2 and 3 we can construct a simulator that solves the discrete logarithm problem.

Hidden because they are used to compute only the values {u;} in the adversary’s view, and these are Pedersen
commitments and so information-theoretically hiding.

19

www.manaraa.com

The simulator is given as inputs values g, h € G; its goal is to output x such that h = g*. The
simulator behaves like the Game 2 challenger, with the following differences:

e When asked to store some file whose coded representation comprises the n blocks {m;;},
1 <i<n, 1< 5 < s, the simulator behaves according to St, except that For each j,

1 < j < s, the simulator chooses random values 3;,v; & Zy, and sets uj < gﬂf - hYi.

e The simulator continues interacting with the adversary until the condition specified in the def-

inition of Game 3 occurs: the adversary, as part of a proof-of-retrievability protocol, succeeds
in responding with aggregate messages {,u;} that are different from the expected aggregate
messages {j;}.
As before, we know because of the change made in Game 1 that the parameters associated
with this protocol instance were generated by the simulator as part of a St query. Because of
the change made in Game 2 we know that ¢’ = 0. Equating the verification equations using
{u} and {u;} gives us

S S

e(H H (namel|i)"" - Hu?j, v) =e(o,9) =e(o’,g) = e H H (namel|i)" - Hugg, v)

(,vi)€eQ Jj=1 (i,vi)€Q Jj=1

from which we conclude that
S S
1
My H Hj
H Uit =11Y%
j=1 Jj=1

and therefore that

S S

1= H ujA#j — H(gﬁj . h'Yj)AHj _ gz;lﬁjAuj) hzjzl'YjANj
Jj=1 j=1

We see that we have found the solution to the discrete logarithm problem,

Z;-:l BjAp;

h=g =175

unless the denominator is zero. However, not all of {Apu;} can be zero, and the values of
{v;} are information theoretically hidden from the adversary, so the denominator is zero only
with probability 1/p, which is negligible.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
2 and 3, we can construct a simulator that uses the adversary to compute discrete logarithms, as
required.

Wrapping up. In Game 3, the adversary is constrained from answering any verification query
with values other than those that would have been computed by Pub.P. Yet we have argued that,
assuming the signature scheme is secure and computational Diffie-Hellman and discrete logarithm
are hard in bilinear groups, there is only a negligible difference in the success probability of the
adversary in this game compared to Game 1, where the adversary is not constrained in this manner.
Moreover, the hardness of the CDH problem implies the hardness of the discrete logarithm problem.
This completes the proof of Theorem [4.2 O

20

www.manaraa.com

A.3 Proof of Lemma 4.5

To prove the lemma, we must first introduce some arguments in linear algebra.
For a subspace D of (Z,)", denote the dimension of D by dimD. Furthermore, let the free
variables of a space, free D, be the indices of the basis vectors {u;} included in D, i.e.,

freeD {iel,n]:DNu =u;} .

Observe that if we represent D by means of a basis matrix in row-reduced echelon form, then
we can efficiently compute dim D and free D.
Next, we give two claims.

Claim A.1. Let D be a subspace of (Zy)", and let I be an l-element subset of [1,n]. If I ¢ freeD,
then a random query over indices I with coefficients in B is in D with probability at most 1/#B.

Proof. Let I be the subspace spanned by the unit vectors in I, i.e., by {u;};cs. Clearly, dimD NT is
at most [— 1; if it equalled [, then we would have D NI = I and each of the vectors {u;};cs
would be in D, contradicting the lemma statement. Suppose dimID N1 equals r. Then there exist
r indices in I such that a choice of values for the coordinates at these indices determines the values
of the remaining [— r coordinates. This means that there are at most (#B)" vectors in D N1 with
coordinate values in B: a choice of one of # B values for each of the r coordinates above determines
the value to each of the other [— r coordinates; if the values of these coordinates are all in B, then
this vector contributes 1 to the count; otherwise it contributes 0. The maximum possible count
is thus (#B)". By contrast, there are (#B)! vectors in I with coordinates in B, and these are
exactly the vectors corresponding to each random query with indices I. Thus the probability that
a random query is in D is at most 1 / (#B)""" <1 / (#B), which proves the lemma. O

Claim A.2. Let D be a subspace of (Zy)", and suppose that #(freeD) = m. Then for a random
I-element subset I of [1,n] the probability that I C freeD is at most m!/(n — 1 + 1)L,

Proof. Color the m indices included in freeD black; color the remaining n — m indices white. A
query I corresponds to a choice of [indices out of all these, without replacement. A query satisfies
the condition that I C freeD exactly if every element of I is in freeD, i.e., is colored black. Thus
the probability that a random query satisfies the condition is just the probability of drawing [black
balls, without replacement, from a jar containing m black balls and n — m white balls; and this

probability is | N |
l 1) (n!/(n—_l)!.) = (n—T;L—k ik
<m> / <n> (m!/(m —1)!)

as required. Note that if m > n—1 then we will have I C free D with probability 1; the upper bound
given by this lemma is a probability greater than 1 in this case, but of course still correct. O

Lemma 4.5. Suppose that B is an e-polite adversary as defined above. Let w equal 1/#B +
(pn)/(n — 1+ 1), If € > w then it is possible to recover a p fraction of the encoded file blocks in
O(n / (e — w)) interactions with B and in O(n*s + (1 + en?)(n) / (e — w)) time overall.

Proof. We say the extractor’s knowledge at each point is a subspace D, represented by a t x n
matrix A in row-reduced echelon form. Suppose that the query—response pairs contributing to the
extractor’s knowledge are

aM = () M =)

21

www.manaraa.com

or VM = W, where V is the t X n matrix whose rows are {q(V} and W is the t x s matrix whose

TOWS are (,ugl), ce ,ugz)). The row-reduced echelon matrix A is related to V by A = UV, where U is
a t X t matrix with nonzero determinant computed in applying Gaussian elimination to V.

The extractor’s knowledge is initially empty, i.e., D = (.

The extractor repeats the following behavior until #(freeD) > pn:

The extractor chooses a random query Q. It runs B on). Suppose B chooses to respond,
giving answer (u1, ..., us); clearly this happens with probability e. Let @ be over indices I € [1,n],
and denote it in vector notation as q. Now we classify () into three types:

1. q ¢ D
2. g€ Dbut I ¢ freeD; or
3. I C freeD.

For queries of the first type, the extractor adds @ to its knowledge D, obtaining new knowledge D', as
follows. It adds a row corresponding to the query to V, obtaining V/, and a row corresponding to the
response to W, obtaining W’; it modifies the transform matrix U, obtaining U’, so that A’ = U'V" is
again in row-reduced echelon form and spans q. The primed versions D/, A", U’, V', and W’ replace
the unprimed versions in the extractor’s state. For queries of type 2 or 3, the extractor does not
add to its knowledge. Regardless, the extractor continues with another query.

Clearly, a type-1 query increases dimD by 1. If dimD equals n then freeD = [1,n] and
#(freeD) = n > pn, so the extractor’s query phase is guaranteed to terminate by the time it
has encountered n type-1 queries.

We now observe that any time the simulator is in its query phase, type-1 queries make up
at least a 1 — w fraction of the query space. By Claim type-2 queries make up at most a
(1/#B) fraction of the query space, since

%r[Q is type-2] = Ic)g qEDAIE freeD)

[
= %r[qe D | I ¢ freeD] ‘%r[f ¢ freeD]
[

IN

Pr
Q

/#B

qE]D|I§Zfree]D]

IN
—

where it is the last inequality that follows from the claimﬁ Here the probability expressions are all
over a random choice of query (), and I and q are the index set and vector form corresponding to
the chosen query.

Similarly, suppose that #(freeD) = m. Then by Claim type-3 queries make up at most an
m!/(n — 1 + 1)! fraction of the query space, and since m < pn (otherwise the extractor would have
ended the query phas) this fraction is at most (pn)Y/(n — 1+ 1)%.

Therefore the fraction of the query space consisting of type-1 and type-2 queries is at most
1/#B+ (pn)Y/(n — 1+ 1)} = w. Since query type depends on the query and not on the randomness
supplied to B, it follows that the fraction of query-and-randomness-tape space consisting of type-1

5The claim gives a condition for a single I satisfying the condition I ¢ freeD; the inequality here is over all such I;
but if the probability never exceeds 1/#B for any specific I then it doesn’t exceed 1/# B over a random choice of I,
either.

22

www.manaraa.com

and type-2 queries is also at most w. Now, B must respond correctly on an e fraction of the query-
and-randomness-tape space. Even if the adversary is as unhelpful as it can be and this € fraction
includes the entire w fraction of type-2 and type-3 queries, there remains at least an (¢ —w) fraction
of the query-and-randomness-tape space to which the adversary will respond correctly and in which
the query is of type 1 and therefore helpful to the extractor. (By assumption € > w, so this fraction
is nonempty.)

Since the extractor needs at most n successful type-1 queries to complete the query phase and
it obtains a successful type-1 query from an interaction with B with probability O(l /(e — w)), it
follows that the extractor will require at most O(n/(e — w)) interactions.

With D represented by a basis matrix A in row-reduced echelon form, it is possible, given
a query q to which the adversary has responded, to determine efficienty which type it is. The
extractor appends q to A and runs the Gaussian elimination algorithm on the new row, a process
that takes O(n?) time [T, Section 2.3][] If the reduced row is not all zeros then the query is type 1;
the reduction also means that the augmented matrix A’ is again in row-reduced echelon form, and
the steps of the reduction also give the appropriate updates to the transform matrix U’. Since the
reduction need only be performed for the e fraction of queries to which B correctly responds, the
overall running time of the query phase is O((1+ en?)(n) / (e — w)).

Once the query phase is complete, the extractor has matrices A, U, V, and W such that
VM = W (where M = (m;;) is the matrix consisting of encoded file blocks), A = UV, and A is
in row-reduced echelon form. Moreover, there are at least pn free dimensions in the subspace D
spanned by A and by V. Suppose i is in freeD. Since A is in row-reduced echelon form, there
must be a row in A, say row t, that equals the ith basis vector u;. Multiplying both sides of
VM = W by U on the left gives the equation AM = UW. For any j, 1 < j < s, consider the
entry at row ¢ and column j in the matrix AM. It is equal to u; - (my j,maj,...,mp ;) = m; . If
we compute the matrix product UW, we can thus read off from it every block of every sector for
i € freeD. Computing the matrix multiplication takes O(n?s) time. The extractor computes the
relevant rows, outputs them, and halts.]

B Erasure Codes

It is easier to verify that a server is storing half the blocks of a file—or any other constant
fraction r —than to verify that it is storing all the blocks of a file: probabilistic checks are unlikely
to uncover a single file block’s being dropped. Before storing it on the server, we would therefore
like to encode an n-block file into a 2n-block file—or, more generally (n/r)-block file—with the
encoding done in such a way that any n blocks suffice for recovering the original file.

Erasure codes are the codes that provide this property [23, 2]. The parameter r is called the
rate. Some erasure codes are rateless in that, for an n-block file, they allow the generation of
arbitrarily many blocks, any n of which suffice for decodingE]

An important property of erasure codes is the efficiency of their encoding and decoding proce-
dures. Ideally, one would like both procedures to have performance linear in n. This is especially
important for our application, where n can be very large. For example, if a block is 1000 bytes and

"More specifically, O(tn) time if A is a t x n matrix; but of course t < n.
8Some erasure codes, called nearly-optimal, require somewhat more than n blocks for decoding: n(1 + €) blocks,
where € is a parameter; a choice of € has an effect on other code parameters.

23

www.manaraa.com

the file being stored is 1 GB, then we have n ~ 229, A code where encoding and decoding take
O(n?) time would be unpleasantly slow.

Another important property of erasure codes is what sort of erasures they can correct. Ideally,
we would like the code to correct against arbitrary erasures: any n blocks should suffice for recov-
ering the original file. Some codes, however, correct only against random erasures: any n blocks
suffice for decoding with overwhelming probability, whereas an adversarially selected n block set
will not suffice.

Unfortunately, no codes are known that provide linear decoding time in the presence of arbitrary
erasure. As we show below, we can still make use of codes that correct random erasures only, but
in this case additional secret preprocessing is required that makes public retrievability impossible.

B.1 Codes for Public Retrievability

Traditional Reed-Solomon—style erasure codes can be constructed for arbitrary rates allowing re-
covery of the original file from any r fraction of the encoded file blocks [24]. The encoding and
decoding procedures will take O(n?) time. The code matrix used can be made public and any user
can apply the decoding procedure. This provides public retrievability.

We recommend that a systematic code be used: one in which the first m blocks of the encoded
file are in fact the encoded file itself. This makes recovering the file from a server that isn’t malicious
much more efficient: simply ask for the first m blocks.

B.2 Efficient Codes for Private Retrievability

To employ codes with linear-time encoding and decoding procedures, we will need to take additional
measures to transform adversarial erasure to random erasure.

Given a file M, encrypt M using a semantically-secure symmetric encryption scheme under a
key kenci- Now apply the erasure code to the encrypted, permuted file. Assuming the encryption
was secure, this is indistinguishable (to any efficient adversary) from applying the erasure code to
a random bitstring of the same length as M.

Each block in the erasure-encoded file M* depends on some subset of the blocks in the unen-
coded, encrypted file. Which blocks, precisely, depends on the code family and the particular key
used to instantiate a code from that family. Let the unencoded file consist of blocks with indices
in the range [1,m], and the encoded file of blocks with indices in the range [1,n]. For i € [1,n], let
7 (i) C [1,m] be the pre-encoding blocks on which encoded block i depends for a choice k of code
key. Suppose that the erasure code is such that:

1. The distribution of 7 (i) is independent of the distributions for 7 (j) for all j # i. More
precisely, the conditional distribution of {7y (i)} over keys k satisfying a specific assignment
for mi(j) for all j # i is statistically indistinguishable from the distribution {7y (i)} over all
keys k.

2. Each block in the encoded file depends on all blocks in the unencoded file with equal proba-
bility. More precisely, for all a,b € [1,m] and for all i € [1,n], Prila € mx(i)] = Prg[b € 7 (7)].

Such a code would necessarily have a long key, but that key can be generated from a short seed
using a secure pseudorandom generator. In fact, it is easy to see that the two properties above are
provided by Online Codes [21], 18], a simple nearly-optimal linear-time code.

24

www.manaraa.com

Now, for any code that provides the two properties above, an adversary could determine which
blocks in the encoded file depend on which blocks in the unencoded file only using the contents of
the encoded blocks. This is because, ignoring the block contents,

Let the encoded blocks be 71,...,1n,. We encrypt each block independently under key kenco,
using a tweakable block cipher [20], with the tweak for the encryption of 7; being the block index i;
the blocks output by this procedure, mq,...,m, are those stored on the server. Assuming the
cipher is secure, the contents of these blocks are indistinguishable from random and independent
of each other.

It is now clear that, without knowledge of kepnc1, k, or kenco, the encoded file mq, . .., m, reveals
no information about the code used, and, specifically, about which code blocks depend on which
pre-encoding blocks. Thus no adversary that erases blocks can do better than random erasure,
which is exactly the property we require for decoding to work with overwhelming probability.

C Can We Eliminate B Coefficients?

In both schemes proposed in Section [3 the verifier sends with each index i of a query a coefficient
v; from a set B. If we could avoid sending these coefficients — equivalently, if we could set B = {1},
then we would obtain a scheme that is more efficient in several respects:

e the verifier would need to flip fewer coins in generating a query;
e the query would be shorter by [- g #B bits;

e the prover’s computation would be greatly reduced: essentially, one multiplication instead of
I 4+ 1 multiplications in the first scheme; one exponentiation instead of [+ 1 exponentiations
in the second schemd’} and

e the verifier’s computation would also be reduced, though not so dramatically.

Unfortunately, it is clear from Lemma that the proof techniques of Section cannot apply
when #B = 1, since we will not then have ¢ < 1/#B, however large the adversary’s success
probability € is.

This is not just a proof problem. Below, we present an attack on the schemes of Section [3] when
B = {1}. In the attack, the server stores n — 1 blocks instead of n, can answer a nonnegligible
fraction of all queries, yet no extraction technique can recover any of the original blocks.

A note on notation. In this section, we will make some simplifications to the notation for the
sake of brevity and clarity. First, obseve that the Part-1 proofs of Section do apply in the case
that B = {1}. We will thus elide the authenticators {o;} in our attack; this allows us to address
both the scheme with private verification and the scheme with public verification simultaneously.
Second, we will set the number of sectors per block, s, to 1. Our attack easily generalizes to the
case s > 1, but this simplification allows us to eliminate a subscript and simplify the presentation.

9The I element summation computed by the prover in the first scheme requires work comparable to a multiplication
when [= lgp.

25

www.manaraa.com

The attack. With the simplifications above, consider an n-block file with blocks (mi,...,my,).
A query will consist of [indices I C [1,n]; the response will be p = >, ;m;. We assume that [is
even

The adverary chooses an index i* at random from [1,n]. For each i # i*, he chooses 7; &
{—1,4+1} and sets

/
m; <— Mg + ;M .

Now the adversary remembers (m,...,mj._;,mj.,,m;). Clearly, the adversary needs to store
one less block than an honest server would.

Now, consider a query I. If i* ¢ I, the adversary responds with p/ = >, ;m}. Otherwise,
i* € I, and the adversary responds with u/ = Dien\ (i} m.

In our analysis, we will use the following simple lemma:

Lemma C.1 ([1], p. 12). For k > 2 we have (Lkl;QJ) > 2M/k.
Proof. (Lk];QJ) is the largest of the k values (]f), (g), e (kﬁl), and (g) + (];), and so it must be at
least as large as their average, 2¥/k. O

In the case i* ¢ I, i/ will be correct provided that we have > icr 7i = 0. But this happens when
the number of +1s and the number of —1s are equal in {7;};c7, and this happens with probability

() () ()= () ()1

In the case i* € I, 1/ will be correct provided we have Y ic Ny Ti = 1. This happens when
there are [/2 — 1 —1s and [+1s in {7;};cp (-}, and this happens with probability

() @) 6 = (hm) () = (5) () et

Thus the adversary can respond to 1/[fraction of queries where i* € I and to a 1/l fraction of
queries where i* ¢ I; so he can respond to a 1/l fraction of all queries, which is clearly nonnegligible.

But now it is impossible for any extraction strategy to recover any block, let alone a p fraction of
all blocks. This is because the subspace known to the adverary is insufficient to determine any block.
Indeed, the adversary’s knowledge is consistent with any value for any block. Fix (mf,...,m}._,
o 115 m),) where m/, = m; +7;m;«. Suppose we believe that m;« = a for any value a. This fixes m;
for each ¢ # i*, as m; = m} — 7;m;~. If we believe, for some index A # i*, my = a, then m;« is fixed
because m/y = my + Tam;+ implies m;+ = (7))(m), —a), and the argument proceeds as before. Since
the adversary’s knowledge is consistent with any choice of value for any (single) block, it cannot
be the case that it allows recovery of the value of any block.

197f [is odd, the adversary can set m} +— m; + (I”* mod p)(m;+), which allows him to respond to that I/n fraction
of queries where i* € I.

26

www.manaraa.com

D Construction with RSA Signatures

D.1 Construction

Let A1 be a bitlength such that the difficulty of factoring a (2A\; — 1)-bit modulus is appropriate to
the security parameter. Let max B be the largest element in B, and let Ay be a bitlength equal to
[lg(l - max B)].

The construction of the private verification scheme PubRSA is:

PubRSA.Kg(). Generate a random signing keypair (spk, ssk) & SKg. Choose two random primes
p' and ¢’ in the range [2’\1_2, M-l 1], where p’ and ¢’ are, additionally, Sophie Germain
primes, so that p = 2p’ + 1 and ¢ = 2¢’ + 1 are also prime. Let N = pg be the RSA
modulus; we have 222172 < N < 22M. The group of quadratic residues of N, @Ry, has
order p'q’. Let H: {0,1}* — QRy be a full-domain hash, which we treat as a random oracle.
Choose a random (2\; + A2)-bit prime e, and set d = e~! mod ¢(N). The secret key is
sk = (N, d, H, ssk); the public key is pk = (N, e, H, spk).

PubRSA.St(sk, M). Given the file M, first apply the erasure code to obtain M’; then split M’

into n blocks (for some n), each s sectors: {mj;}i<i<n. Each sector m;; is an element
1<5<s
of Zn. Now parse sk as (N,d, H,ssk). Choose a random file name name from some suffi-

ciently large domain (e.g., Zy). Choose s random elements uq, ..., us & QRy. Let tog be
“name||n||uil| - - - ||us”; the file tag ¢ is to together with a signature, on ty under private key
ssk: t tOHSSigSSk(tO)'

Now, for each 7, 1 <1i < n, compute
5 d
o; — (H(name”i) . H uT”) mod N .
j=1

The processed file M* is {m;;}, 1 <i <n, 1< j <s together with {o;}, 1 <1i <n.

PubRSA.V(pk, sk, t). Parse pk as (N, e, H,spk). Use spk to verify the signature on on t; if the
signature is invalid, reject by emitting 0 and halting. Otherwise, parse t, recovering name, n,
and uq,...,us. Now pick a random [-element subset I of the set [1,n], and, for each i € I, a

random element v; & B. Let @ be the set {(i,14)}. Send @ to the prover.

Parse the prover’s response to obtain f,...,us and o € Zy. Check that each p; is in the
range [0, [- N -max B]. If parsing fails or the {4;} values are not in range, fail by emitting 0
and halting. Otherwise, check whether

S

o = H H (namel|i)"" - Hu;“ mod N ;

(,v)€eQ Jj=1
if so, output 1; otherwise, output 0.

PubRSA.P(pk, t, M*). Parse the processed file M* as {m;;}, 1 < i <n, 1 < j <s, along with
{01}, 1 <i < n. Parse the message sent by the verifier as @, an l-element set {(7,v;)}, with
the ¢’s distinct, each i € [1,n]| and each v; € B.

27

www.manaraa.com

For each j, 1 < s < 7, compute

Wi Z I/imijEZ ,
(,vi)€Q

where the sum is computed in Z, without modular reduction. In addition, compute

o — H o' mod N .
(1,v1)€Q

Send to the prover in response the values p1, ..., us and o.

D.2 Part-One Proof

We now give the part one proof of our scheme.
We will use the following lemma (see [15] and Lemma 1 of [10]):

Lemma D.1. Given z,y € Zy, along with a,b € 7 such that 2 = y* and gcd(a,b) = 1, one can
efficiently compute T € Zy such that 2% = y.

Theorem D.2. If the signature scheme used for file tags is existentially unforgeable and the RSA
problem with large public exponents is hard, then, in the random oracle model, except with negligible
probability no adversary against the soundness of our public-verification scheme ever ever causes
V to accept in a proof-of-retrievability protocol instance, except by responding with values {q;} and
o that are computed correctly, i.e., as they would be by PubRSA.P.

Once more, we prove the theorem as a series of games.

Game 0. The first game, Game 0, is simply the challenge game defined in Section |2 By assump-
tion, the adversary A wins with nonnegligible probability.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of
all signed tags ever issued as part of a store-protocol query. If the adversary ever submits a tag t
either in initiating a proof-of-storage protocol or as the challenge tag, that (1) has a valid signature
under ssk but (2) is not a tag signed by the challenger, the challenger declares failure and aborts.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to construct a forger against the signature scheme.

Game 2. Game 2 is the same as Game 1, with one difference. The challenger keeps a list of its
responses to St queries made by the adversary. Now the challenger observes each instance of the
proof-of-storage protocol with the adversary — whether because of a proof-of-storage query made
by the adversary, or in the test made of P’, or as part of the extraction attempt by Extr. If in any
of these instances the adversary is successful (i.e., V outputs 1) but either

1. the adversary’s aggregate signature o is not equal to H(i,w)EQ 0" mod N (where @ is the
challenge issued by the verifier and o; are the signatures on the blocks of the file considered
in the protocol instance) or

28

www.manaraa.com

2. at least one the adversary’s aggregate block values pf,...,u. is not equal to the expected
block value p; = Z(i%)eQ Vimgj,

the challenger declares failure and aborts.

Before analyzing the difference in success probabilities between Games 1 and 2, we will establish
some notation and draw a few conclusions. Suppose the file that causes the abort is n blocks long,
has name name, has generating exponents {u;}, and contains sectors {m;;}, and that the block
signatures issued by St are {o;}. Suppose @ = {(i,v;)} is the query that causes the challenger
to abort, and that the adversary’s response to that query was uf, ..., u, together with o’. Let
the expected response —i.e., the one that would have been obtained from an honest prover —be
W1, ..., s and o, where o = H(i,ui)EQ o' mod N and p; = Z(i,ui)EQ vimg; for 1 < j <'s. By the
correctness of the scheme, we know that the expected response satisfies the verification equation,

i.e., that
S
¢ = H H (namel|i)" - Hué" ;
(4,1)€Q J=1
Because the challenger aborted, we know that o’ and pf, ..., u} passed the verification equation,
i.e., that

S !
(@)= [I H(nameli) J]u}" .
(3,11)€EQ Jj=1

Now observe that condition 1, above, implies condition 2, which means that having the simulator
abort on either condition 1 or 2 is the same as having abort on just condition 2: if condition 2
doesn’t hold then ,u; = p; for each j, and it follows from the verification equation that (¢/)¢ = o¢;
because e is relatively prime to ¢(N), this means that ¢/ = ¢ mod N, and since V checked that
o’ is in Zy, this means that ¢’ = o, so condition 1 doesn’t hold, either.

Therefore, if we define Ap; def ,ug — pj for 1 < j < s, it must be the case that if the simulator
aborts at least one of {Ap;} is nonzero.

With this in mind, we now show that if there is a nonnegligible difference in the adversary’s
success probabilities between Games 1 and 2 we can construct a simulator that solves the RSA
problem when the public exponent e is large.

The simulator is given as inputs a 2A;-bit modulus N and a (2\; + A\2)-bit public exponent e,
along with a value y € QRy; its goal is to output * € @R, such that x® = y. The simulator
behaves like the Game 1 challenger, with the following differences:

e In generating a public key, it sets the modulus and public exponent to N and e; it does not
know the corresponding secret modulus d.

e The simulator programs the random oracle H. It chooses a random generator g of QRy. It
keeps a list of queries and responses to answers consistently. In answering the adversary’s
queries it chooses a random 7 &z ~2 and responds with ¢" mod N. (The larger space Zy-
means that the distribution of {¢g"} is statistically indistinguishable from @Ry, even though
the simulator does not know the order of QR because it doesn’t know ¢(N).) The simulator
also answers queries of the form H (namel|i) in a special way, as we will see below.

e When asked to store some file whose coded representation comprises the n blocks {m;},
1<i<n,1<j<s, the simulator behaves as follows. It chooses a name name at random.

29

www.manaraa.com

Because the space from which names are drawn is large, it follows that, except with negligible
probability, the simulator has not chosen this name before for some other file and a query has
not been made to the random oracle at namel|i for any i.

For each j, 1 < j < s, the simulator chooses random values (;,; & Zpy2 and sets uj

Be . . : R
g¢PiyYi. For each i, 1 < i < n, the simulator chooses a random value r; « Zy2, and
programs the random oracle at ¢ as

H(namel||i) = e”/Hum” .

Now the simulator can compute o;, since we have

H (namel||i) Hu =g

if the simulator sets o; = ¢", we will have of = ¢ = (H (namel|)- [T=

mg; .
K) as required.

J

e The simulator continues interacting with the adversary until the condition specified in the
definition of Game 2 occurs: the adversary, as part of a proof-of-storage protocol, succeeds
in responding with a signature ¢’ that is different from the expected signature o.
The change made from Game 0 to Game 1 establishes that the parameters associated with
this protocol instance —name, n, {u;}, {m;;}, and {o;} — were generated by the simulator as
part of a St query; otherwise, execution would have already aborted. This means that these
parameters were generated according to the simulator’s procedure described above. Now,
dividing the verification equation for the forged signature o’ by the verification equation for
the expected signature o, we obtain

(U/O‘ HUA“J — geZ =1 858w yZ;:l QA :
Jj=1

rearranging terms yields
[(a’/a) . 92521 BjAw]e _ y2§:1 RATA : (2)

Now, provided that gcd(e, ijl ﬁjAuj) = 1, we can compute, using Lemma a value z
from such that ¢ = y. It remains only to argue that ged (e, Z;Zl ﬁjAuj) = 1 with negli-
gible probability. First, we noted already that not all of {A;} can be zero. Second, the values
of {v;} are statistically hidden from the adversarym Thus, provided that ged(e, Ap;) =1
for each j where Ap; # 0, we will have ged (e, Z‘;:l ﬂjAuj) = 1 except with probability 1/e,
which is negligible. But for any j where Ap; # 0 we have p;, p; € [0, I - N - max B], so

|Apj| = | — pjl <1-N-max B < ole N . ofletmaxB)] - 921 . 9h2 ¢

and since e is prime this means that ged(Ap;, e) must equal 1.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
1 and 2, we can construct a simulator that uses the adversary to solve the RSA problem, as required.

1Hidden because they are used to compute only the values {u;} in the adversary’s view, and these are Pedersen
commitments with the blinding factors ¢®® are drawn statistically close to the uniform distribution on QRy-

30

www.manaraa.com

Wrapping up. Assuming the signature scheme used for file tags is secure, and that the RSA
problem with large public exponent is hard, we see that any adversary that wins the soundness game
against our public-verification scheme responds in proof-of-storage protocol instance with values
{1;} and o that are computed according to Pub.P, which completes the proof of Theorem O

We also note that our random oracle programming techniques have a similar flavor to that of
Ateniese et al. [4] 3].

D.3 Part-Two and Part Three Proofs

It is easy to see that the Part-Two proof of Section [.2] carries over unchanged to the case where
blocks are drawn from Zy instead of Z,. All the matrix operations require is that inversion be
efficiently computable, and this is, of course, the case in Zy using Euclid’s algorithm, provided we
never encounter values in Zy \ Z}; but such a value would allow us to factor N, so they occur with
negligible probability provided the RSA problem —and therefore factoring—is hard.

Similarly, erasure decoding works just as well when blocks are drawn from Zy; and because
nothing in the proof requires that blocks be distributed uniformly in all of Zy, we could treat each
m;; as an element of Z;O where pg is some prime convenient for whatever erasure code we employ
and ¢ is the largest integer such that p} < N.

E Extensions

In this section we discuss a few possible extensions to our scheme.

Towards adaptively adding storage blocks. In our current scheme the storage algorithm
takes as input a whole file M before storing the data and publishing the random name value. In
some situations it might make sense to be able to incrementally append blocks to the end of the
file. For example, we might want to append to the file itself.

Our current proof relies upon the simulator being able to “program” the random oracle so that
it can sign the blocks of M. The simulator doesn’t not give out the name value until it learns the
whole file M value so that the attacker cannot query the random oracle until the simulator knows
how to program it. However, if we want to allow for appending the simulator will need to disclose
name before learning some values of the block values.

We can overcome this issue by adding a bit of randomness to our system. In addition, to
storing s sectors per data block the storage algorithm will additionally store one more element
that is chosen randomly in Z,. The storage, proof, and verification algorithms will behave just as
though there were s + 1 sectors stored. In the simulation, the simulator will set the program the
oracle so that it can sign a “random” block , and when it gets a request to store a specific block it
will choose the randomness of the last “dummy” sector such that it can sign the entire block. Our
techniques are similar to those used by Coron [§] for tight proofs of signature schemes.

We note that these techniques are useful for validating the integrity of blocks appended to the
end, however, in a complete scheme we still need to concern ourselves with how to redundantly
encode the file such that blocks can be appended to the end.

Toward removing random oracles. One interesting question is whether we can realize our
scheme in the standard model (without random oracles). One step towards this direction is to

31

www.manaraa.com

use a common random string consisting of narax group elements hy, ..., hp,, , Where nyax is the
maximum number of blocks used in a file. In this situation, we could replace the call to H (name||¢)
with h;. In addition, the simulator would use the techniques from the paragraph above so that it
could “program” the h values for signing a “random” message and later use the extra sector to

make the proof go through.

32

www.manharaa.com

	Introduction
	Our Contributions
	Related Work

	Security Model
	Notes on the Model

	Constructions
	Common Notation
	Construction for Private Verification
	Construction for Public Verification
	Parameter Choices

	Security Proofs
	Part-One Proofs
	Scheme with Private Verifiability
	Scheme with Public Verifiability

	Part-Two Proof
	Part-Three Proof

	References
	Security Proof Details
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Lemma 4.5

	Erasure Codes
	Codes for Public Retrievability
	Efficient Codes for Private Retrievability

	Can We Eliminate B Coefficients?
	Construction with RSA Signatures
	Construction
	Part-One Proof
	Part-Two and Part Three Proofs

	Extensions

